Log10 (Lattice thermal conductivity @ 300K - W/m/K) - log_klat_300#

ARFS Top features#

ARFS selected descriptors#

Relevant Descriptors


Correlation analysis#

Distance correlation#

Distance correlation heatmap

Dependency graphs#

Dependency graph

Feature learnability#

Feature learnability


Model performance#

5-Fold CV Metrics overview#

RF - MATMINER

train_rmse

test_rmse

train_errors

test_errors

train_r2

test_r2

mean

0.10284

0.27392

0.07034

0.19008

0.9751

0.82228

min

0.1002

0.2634

0.0691

0.1868

0.9744

0.7947

max

0.1043

0.293

0.0711

0.1937

0.9758

0.84

std

0.00153441

0.0102144

0.000722772

0.00250152

0.000473286

0.0159938

RF - MATMINER+LOBSTER

train_rmse

test_rmse

train_errors

test_errors

train_r2

test_r2

mean

0.10082

0.2671

0.0688

0.18506

0.9761

0.83108

min

0.0981

0.2574

0.0678

0.1822

0.9757

0.8045

max

0.1029

0.2853

0.0701

0.1882

0.9768

0.8472

std

0.00158291

0.0100493

0.00074027

0.002196

0.000374166

0.0153718

MODNet - MATMINER

train_rmse

test_rmse

train_errors

test_errors

train_r2

test_r2

mean

0.0842

0.2451

0.04628

0.15856

0.9828

0.85764

min

0.0634

0.2243

0.0384

0.1503

0.9728

0.8382

max

0.1076

0.274

0.056

0.1677

0.9908

0.884

std

0.0142122

0.0179393

0.00568837

0.0064695

0.00581481

0.0181706

MODNet - MATMINER+LOBSTER

train_rmse

test_rmse

train_errors

test_errors

train_r2

test_r2

mean

0.08892

0.24038

0.04742

0.15434

0.98022

0.86304

min

0.0646

0.2234

0.0373

0.1449

0.9619

0.8314

max

0.1257

0.2796

0.0645

0.1703

0.9901

0.8827

std

0.0213519

0.0203273

0.00958278

0.00862104

0.0100298

0.0194139

Corrected resampled t-test on 10-fold CV#

Summary

t_stat

p_value

significance_stars

d_av

rel_improvement

percent_folds_improved

RF

3.3058

0.00457244

**

0.99793

2.84993

90

MODNet

1.82173

0.0509121

0.611609

3.61001

80

RF t-test

MODNet t-test


Model Explainer#

PFI#

RF pfi MODNet pfi

SHAP#

RF shap MODNet Shap


SISSO Models#

Rung 1#

1D descriptor#

\[\begin{align*} & log\_klat\_300 = -0.413 \\ & -2.899\left(\frac{ \color{#cc3366}{pair_{bwdf\_skew\_mean}} }{ DensityFeatures_{vpa} } \right) \end{align*}\]

2D descriptor#

\[\begin{align*} & log\_klat\_300 = 0.489 \\ & + 3.477\left(\frac{ OxidationStates_{std\_dev\_oxidation\_state} }{ DensityFeatures_{vpa} } \right) \\ & -0.609\left(\sqrt[3]{ \color{#cc3366}{asi_{sum}} }\right) \end{align*}\]

Rung 2#

1D descriptor#

\[\begin{align*} & log\_klat\_300 = -0.42 \\ & -1.728\left(\left(\frac{ \color{#cc3366}{pair_{bwdf\_skew\_mean}} }{ DensityFeatures_{vpa} } \right) \left(\sqrt[3]{ \color{#cc3366}{EIN_{ICOHP}} }\right)\right) \end{align*}\]

2D descriptor#

\[\begin{align*} & log\_klat\_300 = 0.017 \\ & -3.842\left(\sqrt[3]{ \left(\frac{ \color{#cc3366}{asi_{sum}} }{ ElementProperty_{MagpieData\_mean\_MeltingT} } \right) }\right) \\ & + 0.04\left(\left(\left|\color{#cc3366}{pair_{bwdf\_skew\_mean}} - OxidationStates_{std\_dev\_oxidation\_state}\right|\right) \\ \left(\ln{ GaussianSymmFunc_{mean\_G4\_0.005\_1.0\_1.0} }\right)\right) \end{align*}\]

Misc#

ARFS n-iter convergence checks#

Convergence

MAE/ fold from 10-fold CV#

Alternative visual summary of input data for t-test

RF per fold MAEs

MODNet per fold MAEs