get_modnet_pfi_shap_summary#
- mlproject.postprocess.feature_importances.get_modnet_pfi_shap_summary(models_parent_dir, data_parent_dir, target_name, n_repeats=5, random_state=42)[source]#
Load trained MODNet models (5 folds), compute PFI + SHAP values
- Parameters:
models_parent_dir (str) – Directory containing rf_*_pipeline.pkl files for each fold.
target_name (str) – Target variable name (used in file path pattern).
n_repeats (int, optional) – Number of PFI repeats (default=5).
random_state (int, optional) – Random seed for reproducibility.
n_feats (int, optional) – Number of top features to display.
data_parent_dir (str)
- Returns:
pfi_df (pd.DataFrame) – Combined permutation feature importance results.
shap_df (pd.DataFrame) – Combined mean absolute SHAP values across folds.
- Return type:
tuple[DataFrame, DataFrame]