train_eval_fold#
- mlproject.training.fold_trainer.train_eval_fold(model_type, fold_ind, X_train, X_test, y_train, y_test, target_name=None, n_jobs=1, save_model=True, **kwargs)[source]#
Training/evaluation for MODNet, GA-SISSO, and RandomForest.
- Parameters:
model_type (str) – Type of model to train (“modnet”, “ga_sisso”, “rf”).
fold_ind (int) – Fold index for cross-validation.
X_train (pd.DataFrame) – Training features.
X_test (pd.DataFrame) – Testing features.
y_train (pd.DataFrame) – Training target.
y_test (pd.DataFrame) – Testing target.
target_name (str, optional) – Name of the target variable (required for MODNet).
n_jobs (int, optional) – Number of parallel jobs (default is 1).
save_model (bool, optional) – Whether to save the trained model (default is True).
**kwargs – Additional keyword arguments for the specific model training function.
- Returns:
Dictionary containing training and testing regression metrics.
- Return type:
dict