evaluate_feature_set_to_feature#
- mlproject.corr_analysis.dependency_graph.evaluate_feature_set_to_feature(X_source, Y_targets, n_splits=5, scoring=None)[source]#
Train RandomForestRegressor models to predict each column in Y_targets from X_source using K-Fold cross-validation.
- Parameters:
X_source (pd.DataFrame) – Feature matrix.
Y_targets (pd.DataFrame) – DataFrame of target features.
n_splits (int) – Number of folds for CV.
scoring (dict) – Dictionary of scoring functions for cross_validate.
- Returns:
Per-fold metrics for each target feature. summary_df (pd.DataFrame): Mean ± std metrics for each target feature.
- Return type:
metrics_df (pd.DataFrame)