load_cv_results#
- mlproject.postprocess.utils.load_cv_results(models_dir, model_type, target_name, feat_set_type, n_folds, collect_sizes=False)[source]#
Load cross-validation results and aggregate test MAE errors.
- Parameters:
models_dir (str) – Base directory containing model results.
model_type (str) – Model name/prefix (e.g., ‘rf’, ‘modnet’).
target_name (str) – Target property name.
feat_set_type (str) – Subfolder suffix (e.g., ‘matminer’, ‘matminer_lob’).
n_folds (int) – Number of CV folds.
collect_sizes (bool, optional) – If True, also return train/test set sizes per fold.
- Returns:
mean_test_errors (list of float) – Mean test error for each fold.
fold_test_errors (list of np.ndarray) – Raw test errors for each fold.
n_train_list (list of int (optional)) – Number of training samples per fold.
n_test_list (list of int (optional)) – Number of test samples per fold.