get_ttest_summary_df#
- mlproject.postprocess.utils.get_ttest_summary_df(target_name, models_dir, num_folds=10, model_type='rf', feature_set_types=['matminer', 'matminer_lob'], alternative='two-sided')[source]#
Get t-test model summary dataframe including effect size and relative improvement.
- Parameters:
target_name (str) – Target property name.
models_dir (str) – Base directory containing model results.
num_folds (int, optional) – Number of CV folds. Default is 10.
model_type (str, optional) – Model name/prefix (e.g., ‘rf’, ‘modnet’). Default is ‘rf’.
feature_set_types (list of str, optional) – List of feature set variants to compare. Default is [‘matminer’, ‘matminer_lob’]
alternative (str)
- Returns:
summary_df – Summary dataframe with t-test results, effect size, and relative improvement.
- Return type:
pd.DataFrame